同時,大尺度的渦旋從主流吸取動能,在運動過程中傳遞給較小尺度的渦旋,這樣逐級傳遞,一直到微尺度的渦旋。在較大尺度的渦運動中,流體粘性幾乎不起作用,可忽略不計,因而在動能傳遞中幾乎沒有能耗;而在微尺度的渦旋運動中,流體粘性將起主要作用,傳送到這些低級渦旋的能量就會通過粘性作用轉(zhuǎn)化為熱能。水流中同時存在無數(shù)大大小小的渦旋,產(chǎn)生一系列的脈動頻率,具有連續(xù)的頻譜。
眾多的水處理工作者均認(rèn)為:只有具有與顆粒尺寸相同數(shù)量級的渦旋才對碰撞有效,其它的不起作用。由于實際的絮體顆粒尺寸變化幅度是1-1000um,因此,有很大一段的渦旋起作用,不能嚴(yán)格劃分大小渦旋的界限。紊動的擴散作用主要取決于大尺度的紊動。大渦旋的尺度可以認(rèn)為與折板單元的尺度數(shù)量級相同。折板單元連續(xù)的縮放,使水流形成大量不同尺度的渦旋,促進了水流內(nèi)部絮體顆粒間的相對運動,增加了碰撞機會,所以相對于隔板絮凝池,絮凝效果大大提高。
絮凝效果的好壞主要依據(jù)形成的礬花情況。實際生產(chǎn)中,絮凝的效果大都依據(jù)后續(xù)的沉淀出水濁度進行評價,但這已不是絮凝階段結(jié)果的直接反映,沉淀出水濁度還與沉淀效果有很大關(guān)系。另一方面,即使對絮凝效果進行直接評價,評價大多也只是停留在對礬花大小和密實與否的感官描述上,缺少可操作的量化評價標(biāo)準(zhǔn),這與當(dāng)前還比較缺乏相對合理的絮凝評價標(biāo)準(zhǔn)有關(guān) [3] 。
為使水流中的顆粒相互碰撞,就使其與水流產(chǎn)生相對運動。水中的顆粒與水流產(chǎn)生相對運動好的辦法是改變水流的速度。改變速度的方法有兩種:①改變水流速度時造成的慣性效應(yīng)來進行凝聚;②改變水流方向。在湍流中充滿著大大小小的渦旋。其中大渦旋能夠使流體進一步的摻混,使顆粒均勻擴散于流體中;同時創(chuàng)造大量的小漩渦,并將能量輸出給小渦旋。而小渦旋的作用是促進顆粒的碰撞,提高絮凝效率。微渦旋理論認(rèn)為:水中微渦旋尺度與礬花顆粒尺度相近時混凝反應(yīng)充分。而小渦旋的動力學(xué)致因是慣性效應(yīng),特別是湍流渦旋的離心慣性效應(yīng),由此可見湍流中微小渦旋的離心慣性效應(yīng)是絮凝的重要動力學(xué)致因。
矩形往復(fù)式絮凝池中普遍存在死水區(qū),死水區(qū)的存在,不僅容易形成沉積物的堆積,而且嚴(yán)重阻礙了水流的運動。特別是在絮凝后期,水流速度逐漸減小時,死水區(qū)對水流有越來越大的的負(fù)面影響。而圓弧形渠道,幾乎不存在死水區(qū),可以有效的消除死水區(qū)帶來的負(fù)面影響。且圓弧區(qū)的水流速度也比矩形渠道的分布均勻,有利于節(jié)約能耗。
通過混凝動力學(xué)的研究,得到了混凝動力學(xué)中速度梯度與時間的關(guān)系G=G(0)/1+Kt;并通過擬合得到往復(fù)式絮凝池速度梯度的變化規(guī)律近似符合混凝動力學(xué)對速度梯度變化的要求;同時參考了往復(fù)式絮凝池的新研究成果—將往復(fù)式絮凝池轉(zhuǎn)彎處的矩形渠道變成圓弧形狀,設(shè)計出一種的往復(fù)式絮凝池。通過數(shù)學(xué)模擬發(fā)現(xiàn):優(yōu)化后的往復(fù)式絮凝池拐彎處的圓弧形渠道能夠消除傳統(tǒng)往復(fù)式絮凝池轉(zhuǎn)彎處的死水區(qū),而且圓弧形渠道處的水流速度比矩形渠道處的分布均勻,有利于節(jié)約能耗。