利用labview為風(fēng)機(jī)系統(tǒng)控制軟件測試開發(fā)硬件在環(huán)仿真器
概述:使用NI TestStand、LabVIEW實(shí)時(shí)模塊、LabVIEW FPGA模塊和NI PXI平臺創(chuàng)建用于西門子風(fēng)機(jī)控制系統(tǒng)的嵌入式控制軟件發(fā)布的硬件在環(huán)(HIL)測試系統(tǒng)。
由于我們的軟件定期發(fā)布控制器的軟件新版本,我們需要測試軟件,驗(yàn)證這些軟件將會(huì)在風(fēng)力站的環(huán)境下可靠執(zhí)行。在每個(gè)軟件發(fā)布時(shí),我們在現(xiàn)場使用軟件之前,需要先在工廠接受性能測試。這個(gè)全新的測試系統(tǒng)讓我們能夠自動(dòng)化這個(gè)流程。
從過去系統(tǒng)中學(xué)到的經(jīng)驗(yàn)
我們之前的測試系統(tǒng)是在10年前開發(fā)的,它基于另一個(gè)軟件環(huán)境和PCI數(shù)據(jù)采集板卡。測試系統(tǒng)體系結(jié)構(gòu)和性能無法滿足我們對全新的測試時(shí)間和擴(kuò)展性的需求。維護(hù)也十分困難,并且不能自動(dòng)化完成有效的測試。它還缺乏對測試結(jié)果自動(dòng)生成文檔和測試的可跟蹤性,不提供所需的遠(yuǎn)程控制功能。此外,過去的HIL測試環(huán)境不支持多核處理,因此我們無法利用新多核處理器的計(jì)算能力。
未來系統(tǒng)的決定
在評價(jià)可用的技術(shù)之后,我們選擇了LabVIEW軟件和基于PXI的實(shí)時(shí)現(xiàn)場可編程門陣列(FPGA)硬件,開發(fā)我們?nèi)碌臏y試解決方案。我們相信這個(gè)技術(shù)會(huì)帶來靈活性和可擴(kuò)展性,滿足我們未來的技術(shù)需求。同時(shí),我們從NI提供的服務(wù)與產(chǎn)品質(zhì)量中,建立了對解決方案的信心。
由于我們在測試內(nèi)部系統(tǒng)中并沒有深入的開發(fā)經(jīng)驗(yàn),我們將開發(fā)外包給位于丹麥的CIM Industrial Systems A/S公司。我們選擇CIM Industrial Systems A/S是因?yàn)樗麄兙哂袦y試工程能力和歐洲多的LabVIEW認(rèn)證架構(gòu)師。CIM成功開發(fā)了這個(gè)項(xiàng)目,我們對得到的服務(wù)感到十分高興。
靈活的實(shí)時(shí)測試系統(tǒng)體系結(jié)構(gòu)
全新的測試系統(tǒng)通過在LabVIEW實(shí)時(shí)模塊系統(tǒng)中,運(yùn)行組件仿真模型,仿真實(shí)時(shí)風(fēng)機(jī)組件的行為,為被測系統(tǒng)提供仿真信號。
圖2:西門子風(fēng)力測試系統(tǒng)體系結(jié)構(gòu)
主計(jì)算機(jī)包含直觀的LabVIEW用戶圖形界面,能夠方便地通過在面板中移動(dòng)組件進(jìn)行調(diào)整。Windows操作系統(tǒng)應(yīng)用程序與兩個(gè)不兼容實(shí)時(shí)任務(wù)的外部儀器進(jìn)行通信。
圖3:主計(jì)算機(jī)具有直觀的LabVIEW用戶圖形界面。
在主計(jì)算機(jī)上的軟件通過以太網(wǎng)與位于PXI-1042Q機(jī)箱中的LabVIEW實(shí)時(shí)目標(biāo)進(jìn)行通信。LabVIEW實(shí)時(shí)模塊運(yùn)行通常包含20到55個(gè)并行執(zhí)行的仿真DLL的仿真軟件。這個(gè)解決方案能夠調(diào)用使用幾乎所有建模環(huán)境開發(fā)的用戶模型,例如NI LabVIEW控制設(shè)計(jì)與仿真模塊、The MathWorks, Inc. Simulink?軟件或是ANSI C代碼。我們仿真循環(huán)的典型執(zhí)行速率是24 ms,為滿足未來處理能力擴(kuò)展需求提供了大量裕量。
用于定制風(fēng)力渦輪協(xié)議和傳感器仿真的FPGA板卡
由于缺少現(xiàn)有標(biāo)準(zhǔn),在風(fēng)機(jī)中使用的定制通信協(xié)議很多。使用基于NI PXI-7833R FPGA多功能RIO模塊和LabVIEW FPGA模塊,我們能夠與這些協(xié)議進(jìn)行通信并仿真。除了協(xié)議交互之外,我們使用這個(gè)設(shè)備仿真磁性傳感器和三相電壓電流仿真。其他的FPGA板卡與NI 9151R系列擴(kuò)展機(jī)箱連接,進(jìn)一步提高了系統(tǒng)通道數(shù)。
全新測試系統(tǒng)的優(yōu)點(diǎn)
相比上一代解決方案有許多優(yōu)點(diǎn)。由于系統(tǒng)的模塊化特性,進(jìn)行改進(jìn)、修改和進(jìn)一步開發(fā)十分簡單。被測系統(tǒng)可以在無需測試系統(tǒng)體系結(jié)構(gòu)任何變化的情況下進(jìn)行快速替換。遠(yuǎn)程控制功能和系統(tǒng)的簡單復(fù)制讓我們能夠在需要進(jìn)行擴(kuò)展時(shí),靈活地將系統(tǒng)復(fù)制到其他站點(diǎn)。
仿真器為環(huán)境提供了在實(shí)驗(yàn)室中驗(yàn)證新軟件發(fā)布和測試特殊解決方案的能力。它還給了我們測試我們正在研究的新技術(shù)和新概念的工具。
利用labview為太陽能車開發(fā)遙測系統(tǒng)
概述:使用1組NI CompactRIO控制器與8槽式機(jī)箱,監(jiān)控車輛的電壓、電流、溫度,與速度,再透過2.4 GHz數(shù)據(jù)機(jī),將資訊無線傳送至太陽能車后方的追蹤車輛。
遙測(Telemetry)
WSC 與其他太陽能車賽不同之處,乃是團(tuán)隊(duì)完成達(dá)爾文(Darwin) 到阿德雷得(Adelaide) 共3,000 公里的距離;亦表示比賽期間可能隨時(shí)發(fā)生問題,甚至影響車輛能否完成賽事。使用CompactRIO 可重設(shè)機(jī)箱與NI LabVIEW 軟體,我們開發(fā)的搖測系統(tǒng)可監(jiān)控、記錄,并傳輸資料,以隨時(shí)反應(yīng)太陽能電池的狀態(tài)(如上圖1 )。受監(jiān)控的資料可觸發(fā)警示,在問題發(fā)生之前避免之;因此該筆即時(shí)資料可協(xié)助團(tuán)對隨時(shí)擬定佳對策,以縮短除錯(cuò)時(shí)間。同時(shí)系統(tǒng)亦將監(jiān)控并記錄駕駛的動(dòng)作,以利賽后分析。
研發(fā)
雖然太陽能車本身的機(jī)械與電力資料,即為搜集與分析要點(diǎn),但由于電子資料才是打造車輛的關(guān)鍵比賽要素,所以我們額外注重電子資料。我們所搜集的資料,包含設(shè)計(jì)階段的電池與太陽能電池,還有電池的體積與其效能曲線均有。在賽程中搜集到的即時(shí)資料,有助于我們佳化車輛的性能,亦可比較車輛實(shí)際規(guī)格與設(shè)計(jì)規(guī)格之間的差異。另外,策略團(tuán)隊(duì)則使用此資料搭配天氣預(yù)測,以計(jì)算出理想的賽程速度。我們并透過CompactRIO 內(nèi)建記憶體而記錄所有資料,以利賽后分析并供未來改進(jìn)之用。
使用CompactRIO 與可重設(shè)機(jī)箱
因?yàn)镃ompactRIO能在可客制化輸入通道上整合即時(shí)資料擷取功能,亦可記錄并傳輸資料,所以我們選用CompactRIO。而NI cRIO-9104 - 8槽式機(jī)箱可安裝任何必要模組,以滿足我們的監(jiān)控需求。透過多款NI模組,我們可隨著專案發(fā)展而調(diào)整機(jī)箱,并著重于太陽能車的不同面向。NI cRIO-9014 - Real-Time控制器另內(nèi)建記憶體與多種I/O,可提供彈性介面與次要的資料儲存媒體。
我們的客制化機(jī)箱包含1組SEA cRIO-GPS+模組,可即時(shí)提供車輛位置;1組NI 9870序列介面模組,具備RS232介面,可擷取電池監(jiān)控系統(tǒng)的資料;1組NI 9401數(shù)位I /O模組,可透過馬達(dá)控制器端點(diǎn)取得車輛速度,并輸出資料;4個(gè)NI 9219類比I/O模組,可監(jiān)控火星塞、剎車、電流,與太陽能電池陣列的電壓;還有1個(gè)NI 9211熱電偶模組,可感測車輛周圍的溫度。我們另透過NI 9219通用類比I/O模組,以高度與解析度監(jiān)控多種資料,包含電壓、電流、溫度,與電阻。
利用LabVIEW FPGA Module 進(jìn)行程式設(shè)計(jì)
使用LabVIEW FPGA Module即可迅速且輕松設(shè)計(jì)此系統(tǒng)。另外,Express VI具備捷徑功能,可讓使用者迅速變更程式以滿足需求。此外,我們在啟動(dòng)CompactRIO時(shí)隨即執(zhí)行程式,讓整個(gè)系統(tǒng)成為無線架構(gòu),而不需實(shí)際接至系統(tǒng)再手動(dòng)開始程式。我們雖屬業(yè)余團(tuán)隊(duì)且程式設(shè)計(jì)經(jīng)驗(yàn)有限,但直覺且圖形化的圖示與接線,都讓我們能加快程式設(shè)計(jì)的速度且趣味盎然。因?yàn)椴⒎撬心=M都支援CompactRIO的Scan Mode,所以我們透過FPGA程式設(shè)計(jì)模式,整合了共8個(gè)模組。我們檢視由追蹤車即時(shí)搜集的資料,再根據(jù)公式化的程式擬定比賽策略(圖2)。
圖2. 追蹤車上的即時(shí)資料
應(yīng)用
在專案設(shè)計(jì)階段,我們使用CompactRIO 控制器記錄太陽電池的效能,以建立電池于不同氣候條件下的效能曲線。我們連接電池與系統(tǒng),以了解不同溫度下的放電情形,并于每次試駕時(shí)記錄駕駛的動(dòng)作,以協(xié)助團(tuán)隊(duì)判別駕駛行動(dòng)是否正確。
因?yàn)檐囕v完全由太陽能供電,我們將電子設(shè)備的耗電量降至低,讓馬達(dá)獲得大部分的電力,才能完成賽程??椭苹? 槽式機(jī)箱可擷取如GPS、電池資訊、太陽能電池狀態(tài)、馬達(dá)效能,與駕駛動(dòng)作的資料。接著將所有資料儲存于cRIO-9014 – Real-Time 控制器內(nèi)建的2 GB 記憶體,同時(shí)透過LabVIEW VI 將資料格式化為字串,再透過低耗電的2.4 GHz 無線電數(shù)據(jù)機(jī),將資料傳輸?shù)阶粉欆嚿?圖3)。
圖3. 遙測系統(tǒng)的程式區(qū)塊圖
Real-Time 控制器具備足夠的儲存空間,追蹤車上亦裝備1 組筆記型電腦。策略團(tuán)隊(duì)在追蹤車上分析資料,并參考如道路、駕駛,與天候狀況的外部因素,以決定車行速度。
完成所有試駕之后,我們接著分析資料并微調(diào)太陽能車的機(jī)械元件,如調(diào)整車輪、轉(zhuǎn)向靈敏度、懸吊,與胎壓,以提升太陽能車的性能。透過LabVIEW,我們可模擬澳洲所有的可能天候狀況,這樣我們更能有效評估太陽能陣列所提供的電力與功率。此外,我們也會(huì)在賽事過后分析所得的資料,以進(jìn)一步強(qiáng)化新一代的太陽能車。
結(jié)論
因?yàn)槲覀冊谶@個(gè)專案使用即時(shí)監(jiān)測系統(tǒng),且太陽能車所能提供的資料范圍太過廣泛,所以我們初并無法確定主要的焦點(diǎn)為何。隨著專案的進(jìn)展,我們于競賽與設(shè)計(jì)階段,均透過CompactRIO 繪制出電池在不同溫度下的放電率圖表,并借以了解自制太陽能矩陣的效能。本專案從設(shè)計(jì)、實(shí)際比賽,到后續(xù)分析的所有階段,CompactRIO 實(shí)在助益良多。我們成功使用CompactRIO 為太陽能車開發(fā)了監(jiān)控系統(tǒng),且針對未來的更多太陽能專案,我們亦準(zhǔn)備繼續(xù)使用相同的機(jī)箱與控制器。
使用 NI TestStand、LabVIEW 與 PXI 開發(fā)植入式助聽器測試系統(tǒng)
概述:使用 NI LabVIEW、PXI 電腦式儀器與 NI TestStand,建立一套自動(dòng)化測試系統(tǒng),能以 70% 的開發(fā)時(shí)間提供更多更靈活的功能。
我們針對內(nèi)部研發(fā)使用了新的 PXI 架構(gòu)功能測試系統(tǒng),從電路板到組裝完成的產(chǎn)品,測試了 8 種不同的應(yīng)用。我們也使用這套系統(tǒng)在公司內(nèi)部以及不同的代工廠中進(jìn)行生產(chǎn)測試。系統(tǒng)需要執(zhí)行眾多的動(dòng)作,包括捕捉、儲存與分析 5 MHz 信號的波形,將電力與資料穿越皮膚,傳送到植入物中。我們使用聲音測量、電壓參數(shù)測量、在不同負(fù)載情況下的電流測量,同時(shí)通過數(shù)字 I / O及 GPIB與外部設(shè)備溝通。我們使用 USB 通訊設(shè)備來控制定制電路板上的繼電器、開關(guān)與其他的硬件。系統(tǒng)也能夠準(zhǔn)確調(diào)整共振電路并測試 I2C 通訊。系統(tǒng)會(huì)自動(dòng)生成測試報(bào)告,同時(shí)通過網(wǎng)絡(luò)進(jìn)行存貯,供日后統(tǒng)計(jì)分析之用。
我們使用 NI LabVIEW 與 NI TestStand 開發(fā)靈活的軟件架構(gòu),以解決目前及未來的測試需求。這套軟件的功能眾多,能夠測試不同版本的產(chǎn)品,以及開放式與封閉式硬件。使用 NI TestStand,我們可以利用商業(yè)可用的測試執(zhí)行功能來節(jié)省開發(fā)時(shí)間。
使用定制化的操作界面,操作員可以登陸、載入選出的測試序列,然后監(jiān)控測試過程。界面也會(huì)提供即時(shí)資料更新給操作員、生成測試報(bào)告,然后將所有的測試資訊記錄到資料庫中,供日后分析之用。我們在 LabVIEW 中撰寫個(gè)別的測試,這也可以節(jié)省開發(fā)時(shí)間,因?yàn)槲覀儞碛旋嫶蟮暮瘮?shù)庫可以測量、與硬件連接、分析結(jié)果,以及顯示。通過模塊化操作界面進(jìn)行序列控制,并將其與個(gè)別測試模塊分開,我們便能將開發(fā)的成果使用于更多有類似測試需求的產(chǎn)品上。以統(tǒng)一的格式記錄所有的數(shù)據(jù),我們的研發(fā)與生產(chǎn)工程師就能進(jìn)行分析并找出趨勢,并制作生產(chǎn)收益的報(bào)告。他們也會(huì)使用數(shù)據(jù)分析失敗原因,并在設(shè)備制造的過程中找出待改進(jìn)之處。記錄中擁有所有的測試資料,包含使用的序列、參數(shù)、測試儀器的校正日期、測試時(shí)間,以及產(chǎn)品的通過 / 失敗狀態(tài)。
使用labview、CompactRIO開發(fā)嵌入式渦輪增壓器性能檢測系統(tǒng)
概述:與之前的解決方案相比,使用NI CompactRIO開發(fā)嵌入式渦輪增壓器檢測系統(tǒng),提供更高的精度、準(zhǔn)確性和穩(wěn)定性。
我們用基于CompactRIO的嵌入式系統(tǒng)替換了現(xiàn)有的可編程邏輯控制器(PLC)檢測系統(tǒng),從而提高了控制的精度級別。與之前的PLC解決方案相比,新系統(tǒng)具有多個(gè)優(yōu)勢,包括的閥門控制和更的溫度、壓力和轉(zhuǎn)速測量。由于CompactRIO具有更高的性能和穩(wěn)定性,新系統(tǒng)能夠快速地完成例如渦輪增壓器預(yù)備性能檢測和信息分析等功能,從而可以確保產(chǎn)品的穩(wěn)定性。
在開發(fā)時(shí)間和資源分配方面,需要一個(gè)人進(jìn)行硬件設(shè)計(jì)兩個(gè)月,一個(gè)人進(jìn)行軟件開發(fā)三個(gè)月以及一個(gè)人進(jìn)行調(diào)試和檢測一個(gè)月。
基于CompactRIO的全新檢測系統(tǒng)可以測量用于船只引擎驅(qū)動(dòng)的渦輪增壓器的性能,。天然氣、空氣和汽油的輸入量需要根據(jù)安裝的閥門進(jìn)行調(diào)節(jié)。根據(jù)調(diào)節(jié)后的量,渦輪增壓器、渦輪映射和壓縮機(jī)映射的效率使用關(guān)于渦輪增壓器的壓力、溫度和速度值進(jìn)行測量。
使用LabVIEW 與DAQ 監(jiān)控人體于動(dòng)態(tài)平臺上的擺動(dòng)
概述:使用NI LabVIEW軟體搭配NI資料擷取(DAQ)硬體建構(gòu)平臺,其表面具備122組應(yīng)力感測電阻器(FSR)并能以200 Hz進(jìn)行取樣,以量測人體擺動(dòng)與平衡的控制情形。
人體即使在直立時(shí),亦需隨時(shí)保持著穩(wěn)定性。人體整合多種機(jī)制,才能避免身體在靜、動(dòng)態(tài)的條件下跌倒。測力板(Force platform) 與Stabilogram 均為量測、量化人體平衡度的標(biāo)準(zhǔn)。另根據(jù)時(shí)間概念而搜集壓力中心(COP),以呈現(xiàn)姿勢控制的結(jié)果。基本上是以表面支撐人體中心,再垂直投射相關(guān)應(yīng)力。主機(jī)電腦將根據(jù)FSR 的訊號而執(zhí)行一系列的計(jì)算作業(yè),以取得COP (如圖1)。
圖1. 負(fù)責(zé)計(jì)算人體足部擺動(dòng)的程式圖區(qū)塊
大多數(shù)的姿勢與平衡計(jì)量技術(shù),均是主動(dòng)操作姿勢或平衡狀態(tài),再計(jì)算出人體的反應(yīng)。在此系統(tǒng)中,我們是讓人體于不穩(wěn)定的支撐表面上保持平衡,達(dá)到自我反應(yīng)的效果。若讓人體站在可移動(dòng)的支撐表面上,亦可達(dá)到相同的變數(shù)。針對任何測試點(diǎn),我們的平臺可達(dá)到不同方向的平衡紊亂(如圖2)。
在銜接儀器之后,此平臺可隨時(shí)追蹤人體COP 的移動(dòng),再顯示各種狀態(tài)下的人體穩(wěn)定程度。此時(shí)如BOSU Balance Trainer 的動(dòng)態(tài)表面就極其重要,可完整補(bǔ)償姿勢控制器統(tǒng),而模擬動(dòng)態(tài)條件。與僅能模擬靜態(tài)條件的靜態(tài)平臺相較,動(dòng)態(tài)表面更能呈現(xiàn)病理學(xué)方面的問題。
儀器控制
此堅(jiān)固平臺的直徑為635 mm,非平面的圓頂直到動(dòng)態(tài)平臺之處均為柔軟材質(zhì)(如圖2)。另有薄薄一層FSR 排列為陣列,固定于平臺之上。我們另于平臺之上安裝感測器,以捕捉不同的站立姿勢,并達(dá)到更大的儀控面積(如圖2)。此系統(tǒng)好能盡量減少各種限制。
每次進(jìn)行EO 實(shí)驗(yàn),COP 明顯均集中在同一區(qū)域。但若進(jìn)入EC 實(shí)驗(yàn),受測人員的COP 分布就會(huì)產(chǎn)生的變化。結(jié)果顯示,所有受測人員若要在不平衡的表面上達(dá)到平衡,將極度依賴自己生理上的本體感受器(Proprioceptor) 告知大腦目前狀態(tài),也解釋了COP 分配區(qū)域大幅增多的原因。
一項(xiàng)對EC 實(shí)驗(yàn)的有趣觀察指出,若受測人員對生活形態(tài)抱持輕微的積極態(tài)度,則搖擺的程度較大;若對生活形態(tài)抱持適當(dāng)?shù)姆e極態(tài)度,其搖擺程度亦較小。不同的生活形態(tài)亦反應(yīng)出COP 的分配范圍。與適當(dāng)積極態(tài)度的受測人員相較,較不積極的人其COP 分配范圍亦較大。
若受測人員已熟悉了Balance Trainer 動(dòng)態(tài)平臺,亦將更能控制COP 的分配范圍,亦能進(jìn)一步控制自己的本體感受器。在實(shí)際擷取資料之前,這些受測人員已經(jīng)實(shí)際使用動(dòng)態(tài)平臺達(dá)7 天。
結(jié)論
總的來說,我們用LabVIEW 與DAQ 建構(gòu)動(dòng)態(tài)平圖,可了解人體在不穩(wěn)定表面上的平衡狀態(tài)。儀控式的動(dòng)態(tài)平臺顯示了下列特性:
? 測得受測人員的姿勢控制與擺動(dòng)情形若受測人員的COP分配范圍較大,也耗上更多力氣才能達(dá)到平衡
? 受測人員若對生活抱持積極的態(tài)度,也展現(xiàn)了較佳的姿勢控制能力
? 在切斷視覺之后,人體會(huì)立刻切換為本體感受器,通知身體是否在特定方向的擺動(dòng)幅度過大
? 受測人員在熟悉了平臺之后,亦將縮小其COP分配范圍綜合以上結(jié)論,受測人員只要能控制自己的本體感受器,就越能在非平衡的表面上讓自己保持平衡。
使用LabVIEW測量內(nèi)燃機(jī)氣缸壓力
概述:基于LabVIEW軟件控制的DAQ板卡,開發(fā)出OPTIMIZER——一款靈活、經(jīng)濟(jì)的基于PC的氣缸壓力測量分析系統(tǒng)。
背景
內(nèi)燃機(jī)的性能,取決于許多因素。對于給定壓縮比的情況,佳馬力和發(fā)動(dòng)機(jī)扭矩會(huì)出現(xiàn)在以下情況:
? 每個(gè)氣缸的進(jìn)氣口和進(jìn)氣閥的進(jìn)氣量均達(dá)到大
? 燃料/空氣處于適當(dāng)比例
? 燃料和空氣充分混合
? 調(diào)整點(diǎn)火提前量,避免初始爆震
由于是燃料/空氣混合物的燃燒產(chǎn)生的壓力產(chǎn)生了發(fā)動(dòng)機(jī)的扭矩和動(dòng)力,所以在發(fā)動(dòng)機(jī)研發(fā)中重要的檢查參數(shù)就是在壓縮和做功沖程中的氣缸壓力大小及其定時(shí)。進(jìn)氣歧管的臺架測試是在恒流情況下記錄一定壓降下的氣流情況。但當(dāng)安裝在發(fā)動(dòng)機(jī)上后,進(jìn)氣歧管的氣流就變成了受活塞運(yùn)動(dòng)、進(jìn)氣閥面積、氣閥定時(shí)和重疊時(shí)間以及流道形狀影響的非恒流過程。這些參數(shù)的共同作用,往往會(huì)導(dǎo)致多缸發(fā)動(dòng)機(jī)不同氣缸進(jìn)氣差異。
優(yōu)化發(fā)動(dòng)機(jī)性能的步就是設(shè)計(jì)進(jìn)氣歧管和氣閥系以大限度的給每一個(gè)氣缸提供等量空氣。對于給定的壓縮比和進(jìn)氣口溫度,操作者可以通過測量點(diǎn)火之前壓縮沖程中的氣缸壓力來獲得進(jìn)氣信息。因?yàn)橛蜌饣旌衔锏娜紵且粋€(gè)復(fù)雜的反應(yīng)過程,牽涉到很多氣缸的幾何因素以及其它因素,如油氣混合情況、汽油辛烷值、燃料當(dāng)量比、發(fā)動(dòng)機(jī)溫度、空氣溫度和濕度,以及點(diǎn)火時(shí)間等—— 調(diào)整這些參數(shù),以獲得佳的性能,將是一個(gè)相當(dāng)大的挑戰(zhàn)。
通過觀察氣缸壓力測量值以及峰值壓力相對活塞頂死中心(Top-dead-center, TDC)的位置,發(fā)動(dòng)機(jī)技術(shù)人員可以迅速將發(fā)動(dòng)機(jī)調(diào)校到佳性能。由燃燒質(zhì)量分?jǐn)?shù)可見,對于大多數(shù)傳統(tǒng)發(fā)動(dòng)機(jī)而言,如果峰值壓力出現(xiàn)在TDC之后12到15度,并且燃燒發(fā)生在TDC附近的等容階段時(shí),發(fā)動(dòng)機(jī)將表現(xiàn)出佳性能。但在給定壓縮比和燃油辛烷值情況下,為了達(dá)到佳性能所采取的點(diǎn)火提前可能會(huì)因?yàn)閲?yán)重的火花爆擊現(xiàn)象而導(dǎo)致氣閥過熱。因此,在性能優(yōu)化過程中,發(fā)動(dòng)機(jī)技術(shù)人員需要檢測TDC之后的10和40度之間火花爆擊的氣缸壓力。如果檢測到爆震,點(diǎn)火提前取消,以避免活塞受損。
使用LabVIEW和PXI進(jìn)行東海大橋結(jié)構(gòu)健康監(jiān)測
概述:部署一個(gè)堅(jiān)固耐用的PXI系統(tǒng)來監(jiān)測環(huán)境對大橋產(chǎn)生的影響,進(jìn)行實(shí)時(shí)計(jì)算以確定大橋的即時(shí)結(jié)構(gòu)健康狀況,并將數(shù)據(jù)儲存,進(jìn)行離線處理。
東海大橋作為中國跨海大橋,耗資12億美元,于2005年完成通車。六車道的大橋?qū)⑸虾Ec洋山島連在了一起,大橋全長32.5千米,并設(shè)計(jì)成S形以避開臺風(fēng)和海浪區(qū),以車輛安全行駛。
我們搭建了一個(gè)結(jié)構(gòu)健康監(jiān)測(SHM)系統(tǒng),它能夠提供大量的數(shù)據(jù)來評估大橋損壞和退化程度、結(jié)構(gòu)性能狀況、對于突發(fā)性災(zāi)難的反應(yīng)。利用這些數(shù)據(jù)可以對橋梁的設(shè)計(jì)和建造技術(shù)進(jìn)行研究。
我們使用基于NI PXI的數(shù)據(jù)采集系統(tǒng),源于其良好的堅(jiān)固性和小巧的體積,適用于放置在大橋的保護(hù)區(qū)域中。事實(shí)證明,系統(tǒng)在安裝完畢后成功地克服了大橋所遇到的濕度、灰塵、震動(dòng)和化學(xué)腐蝕等各種難題。使用LabVIEW,工程師能夠進(jìn)行重要的實(shí)時(shí)分析,同時(shí),能夠?qū)Υ髽蛏洗罅康膫鞲衅鳟a(chǎn)生的信號進(jìn)行離線處理。
硬件系統(tǒng)設(shè)置
對東海大橋?qū)嵤┍O(jiān)控需要使用超過500個(gè)傳感器,在大橋每段都放置了加速度計(jì)和FBG光學(xué)傳感器,來采集環(huán)境激勵(lì)所引起的頻率響應(yīng)。同時(shí),大橋還配備了風(fēng)速儀和壓式傳感器,以記錄頻率響應(yīng)所對應(yīng)的環(huán)境條件。大橋每一段還設(shè)有一個(gè)數(shù)據(jù)采集站,配備NI PXI-4472B動(dòng)態(tài)信號采集卡(DSA)從周圍的加速度計(jì)采集相關(guān)數(shù)據(jù)。
另外,我們使用NI PXI-6652同步模塊和?NI PXI-6602計(jì)數(shù)器模塊,以及NI PXI-8187機(jī)箱控制器,來解決數(shù)據(jù)采集的同步問題。
在對東海大橋上的系統(tǒng)進(jìn)行設(shè)置時(shí),我們給每個(gè)PXI機(jī)箱都安裝了一個(gè)GPS,使用脈沖每秒(PPS)和IRIG-B定時(shí)信號分別進(jìn)行信號同步和時(shí)間標(biāo)識。PPS每秒傳輸一千萬脈沖,為每個(gè)機(jī)箱提供采樣基準(zhǔn)時(shí)鐘。這使得采集模塊可以在100納秒的分辨率下對大橋上所有設(shè)備的通道實(shí)現(xiàn)同步采樣。
13691203761