車牌校正
?
由于受拍攝角度、鏡頭等因素的影響,圖像中的車牌存在水平傾斜、垂直傾斜或梯形畸變等變形,這給后續(xù)的識別處理帶來了困難。如果在定位到車牌后*行車牌校正處理,這樣做有利于去除車牌邊框等噪聲,更有利于字符識別。目前常用校正方法有:Hough變換法,通過檢測車牌上下、左右邊框直線來計算傾斜角度;旋轉投影法,通過按不同角度將圖像在水平軸上進行垂直投影,其投影值為0的點數(shù)之和時的角度即為垂直傾斜角度,水平角度的計算方法與其相似;主成分分析法,根據(jù)車牌背景與字符交界處的顏色具有固定搭配這一特征、求出顏色對特征點的主成分方向即為車牌的水平傾斜角度;方差小法,根據(jù)字符在垂直方向投影點的坐標方差小導出垂直傾斜角的閉合表達式,從而確定垂直傾斜角度;透視變換,利用檢測到的車牌的四個頂點經(jīng)過相關矩陣變換后實現(xiàn)車牌的畸變校正。
字符識別
?
對分割后的字符的灰度圖像進行歸一化處理,特征提取,然后經(jīng)過機器學習或與字符數(shù)據(jù)庫模板進行匹配,后選取匹配度的結果作為識別結果。目前比較流行的字符識別算法有:模板匹配法、人工神經(jīng)網(wǎng)絡法、支持向量機法和Adaboost分類法等。模板匹配法的優(yōu)點是識別速度快、方法簡單,缺點是對斷裂、污損等情況的處理有一些困難;人工神經(jīng)網(wǎng)絡法學習能力強、適應性強、分類能力強但比較耗時;支持向量機法對于未見過的測試樣本具有更好的識別能力且需要較少的訓練樣本;Adaboost分類法能側重于比較重要的訓練數(shù)據(jù),識別速度快、實時性較高。我國車牌由漢字、英文字母和阿拉伯數(shù)字3種字符組成,且具有統(tǒng)一的樣式,這也是識別過程的方便之處。但由于車牌很容易受外在環(huán)境的影響,出現(xiàn)模糊、斷裂、污損字符的情況,如何提高這類字符和易混淆字符的識別率,也是字符識別的難點之一。易混淆字符包括:0與D、0與Q、2與Z、8與B、5與S、6與G、4與A等。
硬件識別:通俗的解釋是通過立的硬件設備,對所抓拍圖片進行一系列的字符處理;目前停車場系統(tǒng)行業(yè)中硬件識別也分為兩種,即帶有單的車牌識別儀和前端硬件識別兩種,安視睿主要采用的是前端硬件識別。
?
前端硬件識別一體式攝像機適應市場需求,目前得到了廣大客戶的喜愛。安視睿前端硬件識別也叫一體式車牌識別攝像機,是將傳統(tǒng)單的車牌識別儀嵌入至攝像機中,實現(xiàn)前端硬件與攝像機一體化,實現(xiàn)圖像抓拍、視頻流傳輸、字符識別、道閘抬桿等一系列的工作。