集水槽為地面式鋼筋混凝土結構,百萬機組集水槽的高度在14 ~23 m,根據高位收水冷卻塔淋水構架的柱網間距,沿集水槽縱向布置暗框架,暗框架頂梁上擱置單層配水槽,暗框架沿高度方向從上至下一定間距設置拉梁。暗框架與集水槽形成一個整體,共同受力。
對于暗框架而言,采用傳統(tǒng)平面假定計算,暗框架布置間距范圍的內水壓力全部由暗框架承受。由此計算計算出的暗框架結構尺寸偏大,忽略了集水槽側壁共同受力的作用,計算方法偏保守。不能達到優(yōu)化設計,節(jié)省工程造價的目的。
集水槽有限元分析時分三種工況設計: 工況1 :集水槽修建完成后,未投入運行,僅受風荷載。 工況2:集水槽修建完成后,投入正常運行,不受風荷載。 工況3:集水槽修建完成后,投入正常運行,受風荷載。 內力分析中,取以上3 種工況中不利組合進行結構設計。
集水槽整體位移變形可以看出,集水槽暗框架在⑥軸線變形大,集水槽壁板在①、②與⑤、⑥軸線之間變形大。集水槽的大變形約為14 mm。集水槽壁板內力分析取①、②軸線跨中(X=10.4 m)、⑤、⑥軸線跨中(X=43.2 m) 及沿集水槽高度方向(Z=5.0 m) 處進行內力分析。集水槽壁板豎向、水平向均同時承受拉力和彎矩。水平向所受拉力大于豎向,越靠近集水槽底部,水壓力越大,水平向所受約束也約大,所受的拉力越大,大拉了為657 kN/m,彎矩大約-267 kN · m/m。
二沉池集水槽是污水沉淀過程中泥水、固液分離的后一道環(huán)節(jié)和工序,在實際的工程設計中,常見有3種布置形式: 內置雙側堰式、內置單側堰式、外置單側堰式 。內置單側堰式、外置單側堰式均為單側堰進水,設計堰上負荷基本一致,從構造和水力條件來看,兩者沒有明顯的優(yōu)劣之分。內置雙側堰式的集水槽因堰上負荷小、出水水質好而應用較多。 但在近的工程設計與應用中發(fā)現雙側堰進水集水槽主要存在2個現象:
按給水澄清池環(huán)行集水槽計算公式計算得出堰上水頭為 0. 03 m ,跌水頭為 0. 07 m , h 值按經驗取值為 0. 1 m。 結合寶洲污水處理廠二沉池工程實例,經計算孔徑值為 19 mm。 而該項工程開孔為 40 mm ,可以看出與計算值的明顯差異 ,成為導致沉淀后的出水大部分直接從底部平衡孔流出 ,設計均勻分布的三角堰作用降低的根本原因。為解決三角堰不能均勻集水的現象 ,主要的措施只能是減少平衡孔數。 按式 ( 2)計算 ,平衡孔數只有17個。為此本項工程在實際的運行中的平衡孔現已減少了 60個 ,其配水的均勻性及出水水質均得到了較大的改善。