智能車牌識(shí)別一體機(jī)工程識(shí)別數(shù)據(jù):人臉識(shí)別需要積累采集到的大量人臉圖像相關(guān)的數(shù)據(jù),用來(lái)驗(yàn)證算法,不斷提高識(shí)別準(zhǔn)確性,這些數(shù)據(jù)諸如A Neural Network Face Recognition Assignment(神經(jīng)網(wǎng)絡(luò)人臉識(shí)別數(shù)據(jù))、orl人臉數(shù)據(jù)庫(kù)、麻省理工學(xué)院生物和計(jì)算學(xué)習(xí)中心人臉識(shí)別數(shù)據(jù)庫(kù)、埃塞克斯大學(xué)計(jì)算機(jī)與電子工程學(xué)院人臉識(shí)別數(shù)據(jù)等。人臉識(shí)別配合程度:現(xiàn)有的人臉識(shí)別系統(tǒng)在用戶配合、采集條件比較理想的情況下可以取得令人滿意的結(jié)果。但是,在用戶不配合、采集條件不理想的情況下,現(xiàn)有系統(tǒng)的識(shí)別率將陡然下降。比如,人臉比對(duì)時(shí),與系統(tǒng)中存儲(chǔ)的人臉有出入,例如剃了胡子、換了發(fā)型、多了眼鏡、變了表情都有可能引起比對(duì)失敗。廣州智能車牌識(shí)別一體機(jī)工程
人臉識(shí)別考勤機(jī)是一種新型的存儲(chǔ)類考勤機(jī),只需收集職工 的面像并樹(shù)立檔案,當(dāng)職工上下班站在人臉識(shí)別考勤機(jī)的識(shí)別區(qū)域內(nèi),考勤機(jī)上就會(huì)快速的記載考勤情況并保存記載。下面小編給我們介紹一下人臉識(shí)別考勤機(jī)分類。指紋考勤:這個(gè)就是我們現(xiàn)在用的***多的方法,有點(diǎn)在于識(shí)別效人臉識(shí)別門禁:人臉識(shí)別門禁是基于的人臉識(shí)別技術(shù),結(jié)合成熟的ID卡和指紋識(shí)別技術(shù)而推出的安全實(shí)用的門禁產(chǎn)品。產(chǎn)品采用分體式設(shè)計(jì),人臉、指紋和ID卡信息的采集和生物信息識(shí)別及門禁控制內(nèi)外分離,實(shí)用性高、安全可靠。
車輛檢測(cè)可以采用埋地線圈檢測(cè)、紅外檢測(cè)、雷達(dá)檢測(cè)技術(shù)、視頻檢測(cè)等多種方式。采用視頻檢測(cè)可以避免破壞路面、不必附加外部檢測(cè)設(shè)備、不需觸發(fā)位置、節(jié)省開(kāi)支,而且更適合移動(dòng)式、便攜式應(yīng)用的要求。
系統(tǒng)進(jìn)行視頻車輛檢測(cè),需要具備很高的處理速度并采用好的算法,在基本不丟幀的情況下實(shí)現(xiàn)圖像采集、處理。若處理速度慢,則導(dǎo)致丟幀,使系統(tǒng)無(wú)法檢測(cè)到行駛速度較快的車輛,同時(shí)也難以在有利于識(shí)別的位置開(kāi)始識(shí)別處理,影響系統(tǒng)識(shí)別率。因此,將視頻車輛檢測(cè)與牌照自動(dòng)識(shí)別相結(jié)合具備技術(shù)難度。